Search results for "Anodic oxide"
showing 10 items of 22 documents
In situ stress, strain and dielectric measurements to understand electrostriction in anodic oxides
2014
The Effect of Nb Incorporation on the Electronic Properties of Anodic HfO2
2017
Hafnium oxide and Nb doped HfO2 were grown by anodizing sputtering-deposited Hf and Hf-4at.%Nb. Photoelectrochemical characterization was carried out in order to estimate solid state properties such as band gap, flat band potential and electrons internal photoemission threshold energy as a function of thickness and composition of anodic oxides. Optical transitions at energy lower than the band gap value of the investigated anodic films were evidenced, and they are attributed to optical transitions involving localized states inside the band gap. Such states were located at 3.6 eV and 3.9 eV below the conduction band edge for the Nb free and Nb containing hafnium oxide, respectively. Impedanc…
Electrochemically Prepared High-k Thin Films for Resistive Switching Devices
The Influence of Thermal Treatment on the Electronic Properties of a-Nb2O5
2009
The effect of thermal treatments for 1h at 250{degree sign}C in air or under vacuum on the electronic structure of thick amorphous anodic niobia was characterized by electrochemical impedance, differential admittance (DA) and photocurrent spectroscopy (PCS). The analysis of anodized niobia has revealed that it behaves as a pure dielectric. The thermal treatment in air increases the value of the differential capacitance of the niobia sample. The effect is stronger when the thermal treatment is carried out in vacuum and can be cancelled out by reanodizing the oxide to the initial formation potential. In the case of thermally vacuum-treated sample, a behavior typical of semiconducting amorphou…
Characterization of the Solid State Properties of Anodic Oxides on Magnetron Sputtered Ta, Nb and Ta-Nb Alloys
2012
Tantalum oxide, niobium oxide and Ta-Nb containing mixed oxides were grown by anodizing sputter-deposited Ta, Nb and Ta-Nb alloys of different compositions. A photoelectrochemical investigation was performed in order to estimate the band gap and the flat band potential of the oxides as a function of their composition. The band gap of the investigated Ta-Nb containing mixed oxides changed monotonically between those estimated for Ta2O5 (4.1 eV) and Nb2O5 (3.4 eV) and in agreement with a proposed correlation between the Band gap of an oxide and the difference of electronegativity of the oxide constituents. From the differential capacitance curves recorded in a wide range of electrode potentia…
Physicochemical characterisation of thermally aged anodic films on magnetron sputtered niobium
2010
The influence of thermal aging, at intermediate temperature (1h at 250°C) and in different environments, on the electronic and solid-state properties of stabilized 160 nm thick amorphous anodic niobia, grown on magnetron sputtered niobium metal, has been studied. A detailed physicochemical characterisation of the a-Nb2O5/0.5M H2SO4 electrolyte junction has been carried out by means of photocurrent and electrochemical impedance spectroscopy as well by differential admittance measurements. A change in the optical band gap (3.45 eV) of niobia film has been observed after aging (3.30 eV) at 250°C in air for 1 hour. A cathodic shift (0.15-0.2 Volt) in the flat band potential of the junction has …
Effect of ammonium hydroxide addition in the anodizing electrolyte on the electronic properties of anodic oxides on Niobium
2010
Amorphous to Crystalline Transition in Anodic Oxide on Ti and Ti-Si alloys: A Photoelectrochemical Study.
2012
Anodization and anodic oxides
2018
Anodizing is a low-temperature, low-cost electrochemical process allowing for the growth, on the surface of valve metals and valve metal alloys, of anodic oxides of tunable composition and properties. This article is an overview on theoretical aspects concerning the general aspects of the kinetics of growth of barrier and porous anodic oxides and some of their present and possibly future technological applications of anodic oxides. The first part of the article is devoted to anodic oxide growth models, from Guntherschulze and Betz work (in 1934) to the more recent results on barrier and porous oxide films. The second part is focused on industrial processes to fabricate anodic oxides and the…